Pink and Blue of Bones- A Histopathological Analysis of Bony Neoplasm in a Tertiary Hospital of Bihar

Aishwarya Krishna¹, Pallavi Mehra², Sneha Aditi³, Dilip Kumar⁴

¹Junior Resident, Department of Pathology, Patna Medical College and Hospital, Patna, Bihar, India
²Assistant Professor, Department of Pathology, Patna Medical College and Hospital, Patna, Bihar, India
³Senior Resident, Department of Pathology, Patna Medical College and Hospital, Patna, Bihar, India
⁴Professor, Department of Pathology, Patna Medical College and Hospital, Patna, Bihar, India

Received: 17-04-2024 / Revised 16-05-2024 / Accepted 12-06-2024

Corresponding author: Sneha Aditi

DOI: https://doi.org/10.32553/ijmbs.v8i3.2793

Conflict of interest: Nil

Abstract:

Background: Bone lesions have low incidence with diverse presentation and due to the presence of their limited studies it has become a challenging task to reach an accurate diagnosis.

Aim and Objective: This study aims in studying variety of bony lesions observed clinically and histopathologically. Further categorizing into non neoplastic, tumour-like, benign tumour or malignant tumour and determining its correlation with the age and gender predisposition of these lesions.

Materials and Methods: An ambispective study was executed in Pathology department, PMCH, Patna from May 2020 to April 2024 in which a total of 102 cases were collected. The necessary information for the retrospective analysis, such as the patient's age, sex, lesion location, and diagnosis, was obtained from the requisition form and the histopathology data kept in the department of pathology from May 2020 to May 2022. And for prospective study all the radiological proven bony lesions which were excised during period of May 2022 to April 2024 and were sent for histopathological examination were examined.

Results: Non-neoplastic lesions were more common than neoplastic lesions among the 102 specimens that underwent histological examination (53 versus 49). With 21.5% of cases, tuberculous osteomyelitis was the most prevalent non-neoplastic lesion. The most common benign neoplastic lesion detected was a giant cell tumor of the bone (11.76%), while the most common malignant lesion found was osteosarcoma (2.94%).

Conclusion: To improve patient management and diagnosis accuracy, it is advised to utilize clinical, radiological, and histological findings in an integrated manner.

Introduction

The dynamic heterogeneous tissue that is bone is made up of are cartilaginous, osteoid, fibrous, and bone marrow components. These components can result in a variety of pathological lesions, ranging from neoplastic illnesses to degenerative
alterations, inflammation, and metabolic diseases.[1] Bone tumors account for only 0.5% of all cancer cases worldwide, making them comparatively rare. [1] The majority of bone neoplasms are categorized as either benign or malignant by the WHO. Some neoplasms have borderline and intermediate characteristics, despite the clear demarcation between these two categories.

Bone lesions exhibit a spectrum of characteristics, from non-harmful to swiftly lethal, in terms of their clinical, radiological, and morphological properties. To establish a diagnosis, the patient's age, gender, and lesion site are required. Certain benign diseases, such as osteomyelitis, can mimic cancerous tumours whereas myeloma which is a malignant tumour mimics benign aetiology. Accurate Diagnosis requires a systematic and an Integrated approach involving histopathological, Radiological and clinical features.

Material and Methods:
An ambispective investigation of all bone lesions was carried out under the histopathology section of the Department of Pathology of Patna Medical College and Hospital. from May 2020 to April 2024. 102 cases in total, regardless of the participants' sex or age, were gathered. Age, sex, lesion site, diagnosis, and other relevant details for each patient were obtained for the retrospective study from the department's histopathology report and requisition form. Every slide that had been stained with hematoxylin and eosin (H and E) was reexamined, and fresh slices were obtained whenever needed.

Radiologically confirmed bone lesions treated by open biopsy, curettage, or amputation and subjected to standard tissue processing were included in the prospective analysis. First, 10% formalin was used to fix the tissue, and then 5% nitric acid was used to decalcify the removed bone sections. The paraffin block was prepared. H and E were used to stain them for microscopic inspection.

Based on the diagnosis, the bony lesions were classified as benign, malignant, tumor-like, or non-neoplastic. Prior to their inclusion in the trial, all patients provided their informed permission.

Results:
A histological analysis was conducted on 102 instances with different types of bone lesions. They were divided as benign, malignant, tumor-like, and non-neoplastic lesions. [Table 1]

<table>
<thead>
<tr>
<th>Table 1: Showing categorization of bony lesions into non neoplastic, tumour like, benign neoplasm and malignant neoplasm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non neoplastic lesions</td>
</tr>
<tr>
<td>Total =53</td>
</tr>
</tbody>
</table>

Fifty-three instances (51.9%) had non-neoplastic lesions identified. Lesions in the neoplastic bone explained of the 49 cases (48%), 8 cases (0.78%) were malignant and 41 instances (40.1 %) were benign. The younger population, specifically those in the age range of 21 to 30 years, is more susceptible to bone lesions. [Table]
Table 2: Lesions in bone and its presentation with age.

<table>
<thead>
<tr>
<th>Age</th>
<th>Non-neoplastic</th>
<th>Benign</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td><25</td>
<td>15</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>25-35</td>
<td>12</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>35-45</td>
<td>6</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>45-55</td>
<td>15</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>>55</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: Sex predilection and various bony lesion.

<table>
<thead>
<tr>
<th></th>
<th>Non-neoplastic</th>
<th>Benign</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>33</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>Female</td>
<td>20</td>
<td>17</td>
<td>2</td>
</tr>
</tbody>
</table>

With a male-to-female ratio of 1.6:1, they are more common in males (61.76%) than in females (38.23%) [Table 3].

The most frequent non-neoplastic lesion was tuberculous osteomyelitis (21.5%), which was followed by chronic osteomyelitis (15.68%). Aneurysmal bone cysts accounted for 6.86% of all tumor-like lesions.

The most frequent bone lesions of benign neoplastic genesis were giant cell tumors (11.76%), which were followed by osteochondroma (8.82%). It was discovered that primary bone cancers (5.88%) were more common than metastatic lesions (1.96%).

Figure 1: H&E - 20x – shows Chinese letter pattern of fibrous dysplasia

Figure 2: H&E - 20x – shows tumour cells in hyaline cartilage matrix of enchondroma
Figure 3: H&E – 20x – shows spindle shaped fibroblasts arranged in storiform pattern of Non ossifying fibroma

Figure 4: H&E - 40x – shows multinucleated giant cells in neoplastic stroma of giant cell tumour

Figure 5: H&E - 20x – shows plasma cell infiltration of bone marrow in Myeloma
Discussion

This investigation was carefully conducted to identify various bone lesions. Of the 102 cases of bone lesions in our study, 53 cases (or non-neoplastic lesions) were the most common type. In our investigation, we observed 13 cases of tumor-like lesions, 28 cases of benign bone tumors, and 8 cases of malignant bone lesions.

A male to female ratio of 1.6:1 was observed in the majority of bone lesions, which is consistent with findings from...
In the present study, which is consistent with other studies [4,5], primary malignant bone tumors were more common than metastatic tumors; in contrast, metastases in the bone were more frequently detected in studies conducted by Karia KM [1]. The fact that our analysis was based on a limited number of cases could be the most plausible explanation. The most prevalent malignant tumor (2.94%) was osteosarcoma. Other trials with osteosarcoma frequencies ranging from 9.1% to 35.14% revealed similar findings.[12] The occurrence of osteosarcoma has two peak incidences. One peak occurs between the ages of 10 and 25, while the other occurs beyond 40. Ewing's sarcoma, plasmacytoma, and chondrosarcoma were among the other primary malignant tumors.

In our study, metastatic bone tumors were observed in the older age group (above 50 years). Similar results with an average age of 50 were found in a study by George M. Et al. [5]. Similar to a study by Karia KM et al., we found that metastatic bone lesions were more common in the female group in our study. [1] while metastatic tumor deposits shown a preference for men in the study of Rafiq and Tanwani [9].

Conclusion:

Bone lesion histopathological examination is regarded as an intricate field of pathology. Our study's findings were contrasted with numerous other similar investigations carried out by various authors. A broad range of bone abnormalities exist, and certain tumors have a preference for particular ages, sexes, and sites, all of which are consistent with our analysis based on the data we evaluated. Due to the low occurrence of these lesions, there is little experience in treating them, which makes diagnosis more challenging. Consequently, it is advised to employ clinical, radiographic, and histological findings in concert to improve patient management and diagnosis accuracy.
References:

