|| ISSN(online): 2589-8698 || ISSN(print): 2589-868X || International Journal of Medical and Biomedical Studies Available Online at www.ijmbs.info

NLM (National Library of Medicine ID: 101738825) Index Copernicus Value 2021: 70.61

Volume 7, Issue 6; June: 2023; Page No. 11-23



#### **Research Article**

# Process Validation of Paracetamol tablet as per ICH guidelines Ritika Bhatia<sup>1</sup>, Dr. Rakesh Goyal<sup>2</sup>, Dr Dilip Agarwal<sup>3</sup>

<sup>1</sup>Research Scholar, Mahatma Gandhi College of Pharmaceutical Sciences, Jaipur <sup>2</sup>Professor, Mahatma Gandhi College of Pharmaceutical Sciences, Jaipur <sup>3</sup>Principal, Mahatma Gandhi College of Pharmaceutical Sciences, Jaipur

Received: 05-04-2023 / Revised: 10-05-2023 / Accepted: 30-05-2023

DOI: https://doi.org/10.32553/ijmbs.v7i6.2713

Corresponding author: Ritika Bhatia
Conflict of interest: No conflict of interest.

#### **Abstract**

Process validation is an integral part of pharmaceutical manufacturing, ensuring that tablets are consistently produced with quality and efficacy in line with regulatory requirements. The International Council for Harmonization ICH) provides guidelines for the systematic validation of manufacturing processes. This research article presents a comprehensive study on process validation for Paracetamol tablets following the ICH guidelines. The article focuses on various aspects of the validation process, including process design, qualification, and continued process verification, with specific emphasis on Paracetamol tablet manufacturing. Experimental studies were conducted to characterize the critical process parameters and assess their impact on the tablet's quality attributes. The article also discusses the use of statistical analysis techniques for data evaluation and demonstrates the establishment of a robust validation protocol for Paracetamol tablet manufacturing. Through the application of the ICH guidelines, this research contributes to ensuring the consistency and reliability of Paracetamol tablets, enhancing patient safety and meeting regulatory expectations.

**Keywords:** Process validation, ICH guidelines, Critical process parameters, Critical Process Attribution, Statistical analysis, and validation protocol;

#### Introduction

The oral route of drug administration is the most important method of administering drugs for systemic effects. At least 90% of all drugs used to provide systemic effect are administered by oral route. Tablets are defined as solid dosage forms each containing a single dose of one or more active ingredients, obtained by compressing uniform volumes of particles. (1)

#### Validation:

Drug development is a difficult process that includes finding new drugs, testing them in labs, studying animals, conducting clinical trials, and registering them with the appropriate authorities. Many regulatory agencies, including the USFDA,

also demand that the drug product be tested for its identity, strength, quality, purity, and stability before it can be released for use. This is done to further improve the efficacy and safety of the drug product after approval. A crucial component of quality assurance is validation, which entails systematically examining systems, facilities, and processes to ascertain whether they carry out their intended functions adequately and consistently as specified.

#### **Elements of Validation:**

- Design Qualification
- Installation Qualification

- Operational Qualification
- Performance Qualification

#### **Major Phases in Validation:**

Phase 1: This is the Pre-validation Qualification Phase which covers all activities relating to product research and development, formulation pilot batch studies, scaleup studies, transfer of commercial technology to scale batches, establishing stability conditions and storage, and handling of in-process and finished dosage forms, qualification, equipment installation qualificationmaster production document. operational qualification and process capacity.

**Phase 2:** This is the Process Validation Phase. It is designed to verify that all established limits of the critical process parameter are valid and that satisfactory products can be produced even under the worst conditions.

Phase 3: Known as the Validation Maintenance Phase, it requires frequent review of all process related documents, including validation of audit reports, to assure that there have been no changes, deviations, failures and modifications to the production process and that all standard operating procedures (SOPs), including change control procedures, have been followed. At this stage, the validation team comprising of individuals representing all major departments also assures that there have been no changes/deviations that should have resulted in requalification and revalidation. A careful design and validation of systems and process controls can establish a high degree of confidence that all lots or batches produced will meet their intended specifications.

#### **Process Validation:**

USFDA defines process validation as "Process Validation is establishing documented evidence which provides a high degree of assurance that a specific process will consistently produce a product meeting its predetermined specifications and quality characteristics".

It means that the process when operated under the prescribed conditions will consistently produce a product that meets the present specifications and quality attributes. In brief and simple terms, process validation is ensuring that the process does what it purports to do. (3)

# Process Validation activities are described in below steps:

Stage 1 – Process Design: The commercial manufacturing process is defined during this stage based on knowledge gained through development and scale-up activities.

Stage 2 – Process Qualification: During this stage, the process design is evaluated to determine if the process is capable of reproducible commercial manufacturing.

Stage 3 – Continued Process Verification: Ongoing assurance is gained during routine production that the process remains in a state of control.



Figure 1: Process validation lifecycle approach between the three stages.

#### **Types of Process Validation:**

- a. Prospective Validation: It is establishment of documented evidence of what a system does or what it purports to do based upon a plan. This validation is conducted prior to the distribution of new product.
- b. Retrospective Validation: It is the establishment of documented evidence of what a system does or what it purports to do based upon the review and analysis of the existing information. This is conducted in a product already distributed based on accumulated data of production, testing and control.

- c. Concurrent Validation: It is establishment of documented evidence of what a system does or what it purports to do information generated during implemented of the system
- d. Revalidation: Whenever there are changes in packaging, formulation, equipment or processes which could have impact on product effectiveness or product characteristics, there should be revalidation of the validated process. Conditions that require revalidation studies are: Changes in critical component Change in facility or plant Increase or decrease in batch size Sequential batches that fail to conform product and process specifications. (4)

# **Critical Process Parameters and Critical Quality Attributes:**

Critical process parameters (CPPs) are the key variables that directly influence critical quality attributes (CQAs) of a product. In the process validation of Paracetamol tablets, CPPs may include factors such as blending time, compression force, granulation moisture content, and drying temperature. These parameters have a significant impact on critical attributes like tablet hardness, disintegration time, dissolution rate, and content uniformity. It is crucial to identify and control CPPs within specified limits to ensure consistent product quality. By monitoring and optimizing CPPs, manufacturers can effectively meet the desired CQAs, thereby enhancing the efficacy, safety, and performance of Paracetamol tablets

#### **EXPERIMENTAL WORK**

#### **Procedure:**

Evaluation of Paracetamol tablet was done for formulation batch as well as for trial batch. The evaluation parameters are enlisted below:

- a. Pre-Compression parameters (Angle of repose, bulk density, tapped density, Hausner's ratio)
- b. Post-Compression parameters (Weight variation, hardness, friability, Disintegration time)
- c. Assay
- d. LOD
- e. Dissolution, etc.

#### **Instruments used:**

| S.No. | Instrument Name          | Function                 |
|-------|--------------------------|--------------------------|
| 1     | Analytical Balance       | Weighing                 |
| 2     | Hot air Oven             | Drying for LOD           |
| 3     | Bulk density apparatus   | Density test of powder   |
| 5     | UV Visible spectroscopy  | Identification and Assay |
| 6     | Disintegration apparatus | Disintegration time      |
| 7     | Dissolution apparatus    | Dissolving time          |
| 8     | Friability apparatus     | Friability test          |
| 9     | Tablet Hardness tester   | Hardness Test            |

**Equipment used:** 

| S.No. | <b>Equipment Name</b>     | Function                   |
|-------|---------------------------|----------------------------|
| 1     | Vibro sifter #60          | Sifting of raw material    |
| 2     | Multimill                 | Milling                    |
| 3     | Rapid Mixer Granulator    | Dry mixing and granulation |
| 5     | Mechanical stirrer        | Stirring                   |
| 6     | Fluid Bed Dryer           | Drying                     |
| 7     | Octagonal Blender         | Blending                   |
| 8     | Rotary tablet compression | Compression                |
| 9     | Tablet inspection belt    | Inspection                 |

| 10 | Rlister Pack machine | Packing of tablets |
|----|----------------------|--------------------|

#### Drug and Raw material used:

| S.No. | Ingredient           | Function                      |
|-------|----------------------|-------------------------------|
| 1     | Paracetamol          | API (Antipyretic)             |
| 2     | Sodium starch glycol | Anti-adherent/ Disintegrant   |
| 3     | Lactose              | Diluent/ Filler               |
| 4     | Talc                 | Glidant/ Mineral              |
| 5     | Magnesium Stearate   | Diluent/ Lubricant            |
| 6     | Corn Starch          | Diluent/ Disintegrant/ Binder |

#### RESULTS AND DISCUSSION

Pre-compression parameters:

| Batches (Trial) | Angle of Repose (θ) | <b>Bulk density</b> | Tapped density | Hausner's Ratio |
|-----------------|---------------------|---------------------|----------------|-----------------|
| 1               | 47.08               | 0.54                | 0.72           | 1.33            |
| 2               | 44.01               | 0.52                | 0.71           | 1.36            |
| 3               | 35.23               | 0.6                 | 0.80           | 1.33            |

Pre-compression parameters for the trial batches

| Batches | Angle of Repose (θ) | <b>Bulk density</b> | Tapped density | Hausner's Ratio |
|---------|---------------------|---------------------|----------------|-----------------|
| 1       | 32.21               | 0.6                 | 0.82           | 1.36            |
| 2       | 33                  | 0.6                 | 0.83           | 1.38            |
| 3       | 31.23               | 0.6                 | 0.82           | 1.36            |

Pre-compression parameters for the Formulation batches

#### **Discussion:**

The blend was analyzed for parameters such as Angle of Repose, Bulk Density, Tapped Density and Hausner's Ratio. Batch 1, 2 and 3 all showed good flow ability.

During trial Batch 1 and 2 showed poor flow ability.

Post Compression Parameters:

| Batches | Weight Variation | Hardness | Friability | <b>Disintegration Time</b> |
|---------|------------------|----------|------------|----------------------------|
| (Trial) | (Avg SD)         | (kg/cm2) | (%)        |                            |
| 1       | 661.2±0.45       | 8 kg     | 0.001%     | 4 min 45 sec               |
| 2       | 655.3±0.50       | 7.8 kg   | 0.001%     | 4 min 4 sec                |
| 3       | 659.2±0.35       | 5 kg     | 0.09%      | 3 min 50 sec               |

# Post-compression parameters for the trial batches

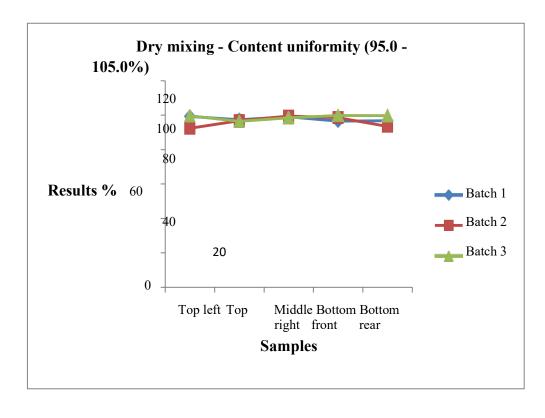
| Batches | Weight Variation (Avg SD) | Hardness (kg/cm2) | Friability (%) | Disintegration Time |
|---------|---------------------------|-------------------|----------------|---------------------|
| 1       | 661.2±0.45                | 4.8 kg            | 0.83%          | 3 min 6 sec         |
| 2       | 655.3±0.50                | 5 kg              | 0.79%          | 3 min 14 sec        |
| 3       | 659.2±0.35                | 4.8 kg            | 0.81%          | 3 min 30 sec        |

#### Post-compression parameters for the formulation

#### **Discussion:**

There was no weight variation during trial batches.

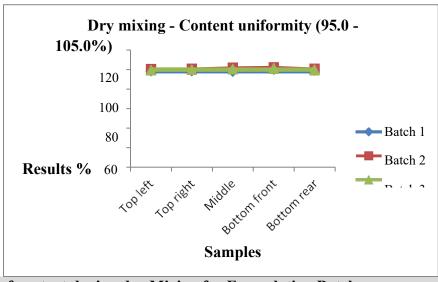
Tablets obtained during the trial of Batch 1 and 2 were too hard because of the starch paste and excess of starch in tablets.


Friability of tablets was less than 1 %.

So the amount of starch in powder was reduced to achieve a proper hardness of the tablet. All Batches showed disintegration time within 5 min.

Assay of Paracetamol tablet during dry mixing:

| Location            | Assay of Paracetamol (%) 5 mins of dry mixing |         |         |  |
|---------------------|-----------------------------------------------|---------|---------|--|
|                     | Batch A                                       | Batch B | Batch C |  |
| Top left            | 99.2%                                         | 92.3%   | 99.5%   |  |
| Top right           | 97.3%                                         | 96.7%   | 96.4%   |  |
| Middle              | 98.9%                                         | 99.4%   | 98.4%   |  |
| <b>Bottom front</b> | 96.5%                                         | 98.5%   | 99.8%   |  |
| Bottom rear         | 96.7%                                         | 93.4%   | 99.7%   |  |
| Mean                | 97.7%                                         | 96.06%  | 98.7%   |  |
| SD                  | 1.25                                          | 3.11    | 1.43    |  |
| %RSD                | 1.28                                          | 3.23    | 1.45    |  |


Assay of Paracetamol during Dry mixing for trial batches



Assay of content during dry Mixing for Trial Batch

| Location            | Assay of Parac  | Assay of Paracetamol (%) |        |  |  |  |  |
|---------------------|-----------------|--------------------------|--------|--|--|--|--|
|                     | 5 mins of dry n | 5 mins of dry mixing     |        |  |  |  |  |
|                     | Batch A         | Batch A Batch B Batch C  |        |  |  |  |  |
| Top left            | 98.3%           | 100.3%                   | 99.2%  |  |  |  |  |
| Top right           | 98.4%           | 100.6%                   | 99.7%  |  |  |  |  |
| Middle              | 97.5%           | 101.8%                   | 100.2% |  |  |  |  |
| <b>Bottom front</b> | 99.9%           | 100.2%                   | 100.8% |  |  |  |  |
| <b>Bottom rear</b>  | 98.9%           | 100.6%                   | 99.6%  |  |  |  |  |
| Mean                | 98.6%           | 100.7%                   | 99.9%  |  |  |  |  |
| SD                  | 0.88            | 0.64                     | 0.61   |  |  |  |  |
| %RSD                | 0.89            | 0.63                     | 0.61   |  |  |  |  |

# Assay of Paracetamol during Dry mixing for Formulation



# Assay of content during dry Mixing for Formulation Batch

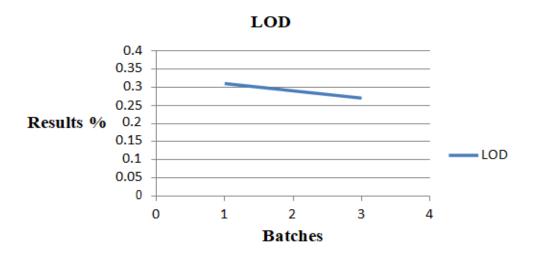
#### **Discussion:**

Dry mixing was done for 5 min at 70 RPM.

All the Batches showed good content uniformity.

#### Wet Granulation and Drying for LOD:

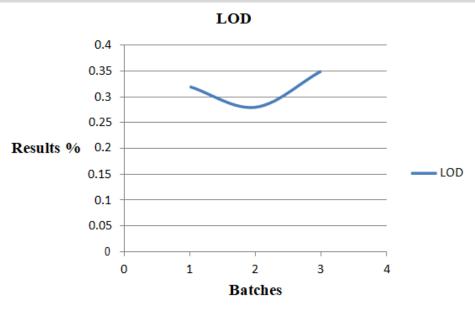
| Batch No.                 | 1               | 2               | 3               |
|---------------------------|-----------------|-----------------|-----------------|
| Addition of Binding agent | 5% Starch paste | 5% Starch paste | 5% Starch paste |


#### Wet granulation

| Batch no.         | 1                   | 2    | 3      |        |
|-------------------|---------------------|------|--------|--------|
| Control variables | Acceptance criteria |      |        |        |
| Inlet temp.       | 60±5∘C              | 58∘C | 57∘C   | 58.1°C |
| Outlet temp.      | 55±5°C              | 46∘C | 47.4°C | 48.6°C |

**Drying (Equipment name – Fluidized bed dryer)** 

| Batch (Trial)      | 1     | 2     | 3     |
|--------------------|-------|-------|-------|
| LOD (NMT 1.0% w/w) | 0.31% | 0.29% | 0.27% |
|                    |       |       |       |


**LOD for Trial Batches** 



#### LOD for Trial Batches

| Batch no.          | 1     | 2     | 3     |
|--------------------|-------|-------|-------|
| LOD (NMT 1.0% w/w) | 0.32% | 0.28% | 0.35% |

#### **LOD for Formulation Batches**



#### **LOD of Formulation Batches**

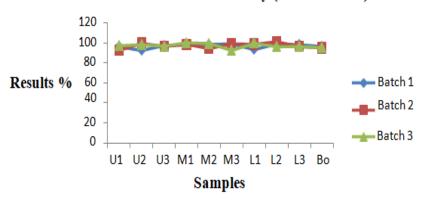
Sizing and Milling of Granules:

| Sixing and Mitting of Gre      |                       |          | _        |          |
|--------------------------------|-----------------------|----------|----------|----------|
| Batch no.                      |                       | 1        | 2        | 3        |
| Control variable               | Acceptance criteria   |          |          |          |
| Sieve integrity before milling | Should not be damaged | Complies | Complies | Complies |
| Sieve integrity after milling  | Should not be damaged | Complies | Complies | Complies |

Sizing and milling of granules (Equipment name – Multi mill)

#### Lubrication:

| Pre-lubrication      |            |       |       |       |  |
|----------------------|------------|-------|-------|-------|--|
| Parameters           | Acceptance | 1     | 2     | 3     |  |
|                      | criteria   |       |       |       |  |
| Pre-lubrication time | 10min      | 10min | 10min | 10min |  |
| Pre-lubrication RPM  | 30 RPM     | 30    | 30    | 30    |  |
| Lubrication          |            |       |       |       |  |
| Lubrication time     | 5min       | 5min  | 5min  | 5min  |  |
| Lubrication RPM      | 30 RPM     | 30    | 30    | 30    |  |


**Lubrication (Equipment name – Octagonal blender)** 

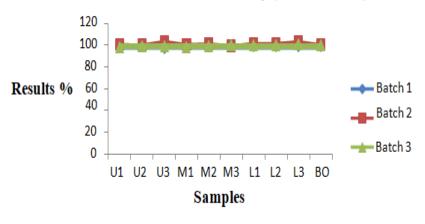
### **Pre-Lubrication Trial Batches:**

| Sample location          | Pre-lubrication (Trial) -Content of Uniformity (95.0 – |        |        |  |
|--------------------------|--------------------------------------------------------|--------|--------|--|
|                          | 105.0%)                                                |        |        |  |
| Batch no.                | 1                                                      | 2      | 3      |  |
| U1 (Upper left rear)     | 96.5%                                                  | 92.5%  | 97.2%  |  |
| U2 (Upper centre front)  | 92.6%                                                  | 99.7%  | 98.3%  |  |
| U3 (Upper right rear)    | 97.6%                                                  | 96.6%  | 96.8%  |  |
| M1(Middle left centre)   | 98.4%                                                  | 98.7%  | 100.2% |  |
| M2(Middle centre)        | 98.7%                                                  | 94.5%  | 99.4%  |  |
| M3 (Middle right centre) | 99.2%                                                  | 99.3%  | 92.5%  |  |
| L1(Lower left front)     | 93.5%                                                  | 99.8%  | 99.7%  |  |
| L2 (Lower centre rear)   | 99.1%                                                  | 101.2% | 96.3%  |  |
| L3 (Lower right front)   | 98.3%                                                  | 96.5%  | 96.5%  |  |
| BO (Bottom centre)       | 96.6%                                                  | 95.2%  | 95.4%  |  |
| Mean                     | 97.05%                                                 | 97.4%  | 97.23% |  |
| SD                       | 2.31                                                   | 2.77   | 1.85   |  |
| %RSD (NMT 5.0%)          | 2.38                                                   | 2.85   | 1.91   |  |

**Pre-lubrication content uniformity for trial batches** 

#### Pre-lubrication Content uniformity (95.0 - 105.0%)




# **Pre-Lubrication Content Uniformity for Trial Batch**

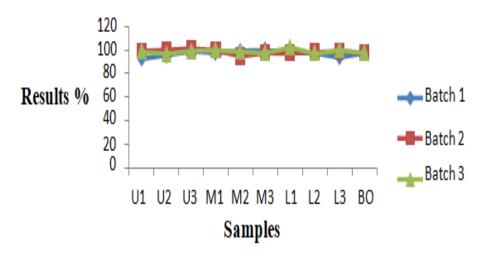
Pre-Lubrication Formulation Batches:

| Sample location          | <b>Pre-lubrication -Content of Uniformity (95.0 – 105.0%)</b> |        |        |  |
|--------------------------|---------------------------------------------------------------|--------|--------|--|
| Batch no.                | 1                                                             | 2      | 3      |  |
| U1 (Upper left rear)     | 97.7%                                                         | 100.4% | 97.7%  |  |
| U2 (Upper centre front)  | 99.9%                                                         | 100.0% | 98.3%  |  |
| U3 (Upper right rear)    | 97.2%                                                         | 103.2% | 98.5%  |  |
| M1(Middle left centre)   | 97.7%                                                         | 100.3% | 97.7%  |  |
| M2(Middle centre)        | 99.7%                                                         | 101.0% | 98.9%  |  |
| M3 (Middle right centre) | 99.9%                                                         | 99.2%  | 99.9%  |  |
| L1(Lower left front)     | 98.4%                                                         | 101.3% | 99.2%  |  |
| L2 (Lower centre rear)   | 98.6%                                                         | 101.2% | 99.9%  |  |
| L3 (Lower right front)   | 98.6%                                                         | 102.9% | 100.0% |  |
| BO (Bottom centre)       | 98.3%                                                         | 100.2% | 99.7%  |  |
| Mean                     | 98.6%                                                         | 100.9% | 99.2%  |  |
| SD                       | 0.97                                                          | 1.251  | 1.207  |  |
| %RSD (NMT 5.0%)          | 0.97                                                          | 1.25   | 1.20   |  |

### Pre-lubrication content uniformity for the formulation

# Pre-lubrication Content uniformity (95.0 - 105.0%)




## **Pre-Lubrication Content Uniformity for Formulation Batch**

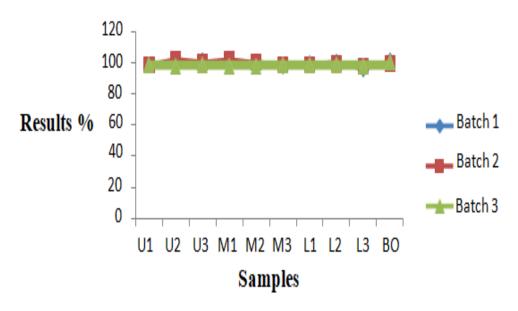
#### Lubrication Trial Batches:

| Sample location          | Lubrication (Trial) -Content of Uniformity (95. |        |        |  |
|--------------------------|-------------------------------------------------|--------|--------|--|
|                          | 105.0%)                                         |        |        |  |
| Batch no.                | 1                                               | 2      | 3      |  |
| U1 (Upper left rear)     | 92.4%                                           | 99.2%  | 98.4%  |  |
| U2 (Upper centre front)  | 95.3%                                           | 99.9%  | 96.7%  |  |
| U3 (Upper right rear)    | 98.7%                                           | 101.2% | 99.1%  |  |
| M1(Middle left centre)   | 97.4%                                           | 99.8%  | 99.8%  |  |
| M2(Middle centre)        | 99.2%                                           | 94.6%  | 98.6%  |  |
| M3 (Middle right centre) | 99.6%                                           | 97.5%  | 97.2%  |  |
| L1(Lower left front)     | 98.1%                                           | 97.2%  | 102.2% |  |
| L2 (Lower centre rear)   | 97.3%                                           | 98.1%  | 96.8%  |  |
| L3 (Lower right front)   | 93.5%                                           | 98.7%  | 99.8%  |  |
| BO (Bottom centre)       | 97.4%                                           | 97.6%  | 97.4%  |  |
| Mean                     | 96.8%                                           | 98.3%  | 98.6%  |  |
| SD                       | 2.41                                            | 1.83   | 1.22   |  |
| %RSD (NMT 5.0%)          | 2.49                                            | 1.86   | 1.23   |  |
| %RSD (NMT 5.0%)          | 2.49                                            | 1.86   | 1.23   |  |

**Lubrication content uniformity for trial batches** 

# Lubrication Content uniformity (95.0 - 105.0%)




# **Lubrication Content Uniformity for Trial Batch**

#### Lubrication Formulation Batches:

| Sample location          | <b>Lubrication -Content of Uniformity (95.0 – 105.0%)</b> |        |       |  |
|--------------------------|-----------------------------------------------------------|--------|-------|--|
| Batch no.                | 1                                                         | 2      | 3     |  |
| U1 (Upper left rear)     | 98.6%                                                     | 98.4%  | 98.2% |  |
| U2 (Upper centre front)  | 98.4%                                                     | 102.0% | 97.5% |  |
| U3 (Upper right rear)    | 100.6%                                                    | 100.0% | 98.1% |  |
| M1(Middle left centre)   | 97.6%                                                     | 101.8% | 97.5% |  |
| M2(Middle centre)        | 100.4%                                                    | 99.8%  | 97.7% |  |
| M3 (Middle right centre) | 97.6%                                                     | 98.5%  | 98.4% |  |
| L1(Lower left front)     | 99.1%                                                     | 98.6%  | 98.6% |  |
| L2 (Lower centre rear)   | 100.0%                                                    | 99.4%  | 98.2% |  |
| L3 (Lower right front)   | 95.9%                                                     | 97.6%  | 97.0% |  |
| BO (Bottom centre)       | 100.7%                                                    | 98.9%  | 99.8% |  |
| Mean                     | 98.8%                                                     | 99.5%  | 98.1% |  |
| SD                       | 1.578                                                     | 1.448  | 0.770 |  |
| %RSD (NMT 5.0%)          | 1.59                                                      | 1.45   | 0.78  |  |

Lubrication content uniformity for formulation

# Lubrication Content uniformity (95.0 - 105.0%)



# **Lubrication Content Uniformity for Formulation Batch**

#### **COMPRESSION DATA:**

| Parameters       | Batches          |               |               | Acceptance        |
|------------------|------------------|---------------|---------------|-------------------|
|                  | Batch A          | Batch B       | Batch C       | criteria          |
| Description      | White colored    | White colored | White colored | White colored     |
|                  | round and        | round and     | round and     | round and         |
|                  | uncoated tablets | uncoated      | uncoated      | uncoated tablets  |
|                  | free from loose  | tablets free  | tablets free  | free from loose   |
|                  | dust.            | from loose    | from loose    | dust.             |
|                  |                  | dust.         | dust.         |                   |
| Hardness         | 4.8 kg           | 5 kg          | 4.8 kg        | NLT 4 kg          |
| Thickness        | 3.8mm            | 3.8mm         | 3.8mm         | 3.9mm             |
| Friability       | 0.83%            | 0.79%         | 0.81%         | NMT 1%            |
| Diameter         | 13mm             | 13mm          | 13mm          | 13mm              |
| Disintegration   | 3 min 6 sec      | 3 min 14 sec  | 3 min 30 sec  | NMT 15 min        |
| time             |                  |               |               |                   |
| Assay            | 99.5%            | 100.5%        | 99.7%         | Should be 90-     |
| (By UV)          |                  |               |               | 110% Of label     |
|                  |                  |               |               | clam.             |
| Weight variation | Complies         | Complies      | Complies      | NMT 2 tablets     |
|                  |                  |               |               | differ by + 5 %   |
|                  |                  |               |               | &None differs     |
|                  |                  |               |               | by + 10 % from    |
|                  |                  |               |               | average weight.   |
| Dissolution      | 99.4%            | 100.2%        | 94.2%         | NLT 80% of        |
|                  |                  |               |               | labelled amount   |
|                  |                  |               |               | of Paracetamol    |
|                  |                  |               |               | in the tablets is |
|                  |                  |               |               | dissolved in 30   |
|                  |                  |               |               | Minutes.          |

# **Compression data**

#### **Conclusion**

The overall data of the three batches (Batch No. 1, 2 and 3) at each of the stages for the specified parameters, it is concluded that with process validation for the Paracetamol tablet produces the batches with no significant deviation, and reported documented evidence that process can effectively produce a product with all required characteristics and uniformity in final dosage form, from batches to batches.

#### **Future Scope:**

The future of process validation for tablets holds promising advancements driven by technology and regulatory expectations. Automation and datadriven approaches will play a vital role in ensuring real-time monitoring and control of critical process parameters. Process analytical technology (PAT), continuous manufacturing, and quality by design (QbD) principles will further optimize process validation by enabling faster and more efficient manufacturing processes while maintaining product quality. Additionally, the incorporation of artificial intelligence (AI) and machine learning algorithms will enhance data analysis and prediction capabilities. The integration of advanced technologies and a science-based approach will streamline process validation, leading to improved efficiency, reduced costs, and enhanced patient safety.

#### References

1. Lodaya, Mayur P. 2011. "Oral Solid Dosage Forms." In Martin's Physical Pharmacy and Pharmaceutical Sciences: Physical Chemical

- and Biopharmaceutical Principles in the Pharmaceutical Sciences: Sixth Edition.
- 2. Boqué, Ricard, Alicia Maroto, Jordi Riu, and F. Xavier Rius. 2002. "Validation of Analytical Methods." Grasas y Aceites.
- 3. Kruve, Anneli et al. 2015. "Tutorial Review on Validation of Liquid Chromatography-Mass Spectrometry Methods: Part I." Analytica Chimica Acta.
- Manadas, Rui, Maria Eugénia Pina, and Francisco Veiga. 2002. "A Dissolução in Vitro Na Previsão Da Absorção Oral de Fármacos Em Formas Farmacêuticas de Liberação

- Modificada." Revista Brasileira de Ciencias Farmaceuticas/Brazilian Journal of Pharmaceutical Sciences.
- 5. Aleem, H. et al. 2003. "Pharmaceutical Process Validation: An Overview." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering.
- 6. Liu, Junjie, Yongli Yu, Liu Zhang, and Chenglong Nie. 2011. "An Overview of Conceptual Model for Simulation and Its Validation." In Procedia Engineering.