Gingival Crevicular Blood as a Diagnostic aid for the Detection of Diabetes Mellitus: an in-Office Chairside Test in Dental Practice

Battu Pragna1, Pradeep Shukla2, MD. Aamir Ahsan3, G. Shirisha4, Balasani Vinay Goud5, Kothuri Padma6

1MDS Department of Periodontology and Implantology, Divya Jyoti College of Dental Sciences and Research, Modinagar, India.

2Principal, Prof.[HOD], Department of Periodontology and Implantology, Divya Jyoti College of Dental Sciences and Research, Modinagar, India.

3Senior Lecturer, Department of Periodontology and Implantology, Divya Jyoti College of Dental Sciences and Research, Modinagar, India.

4MDS Department of Periodontology and Implantology, Divya Jyoti College of Dental Sciences and Research, Modinagar, India.

5Senior Lecturer, Department of Conservative Dentistry and Endodontics, S. Nijalingappa Dental College, Gulbarga, India.

Article Info: Received 05 January 2021; Accepted 30 June 2022
doi: https://doi.org/10.32553/ijmbs.v6i7.2579
Corresponding author: Battu Pragna
Conflict of interest: No conflict of interest.

Abstract

Background: Diabetes is a chronic metabolic disease because of the elevated levels of glucose in the blood. And usually most of the diabetic patients are left undiagnosed in their early stages of the disease because of the unnoticeable symptoms by the patients which could lead to the severe damage to the body system, hence an early diagnosis is very important and life saving in diabetic patients.

Aim: aim of the present study is to evaluate the accuracy of gingival crevicular blood as a diagnostic tool in diabetic patients.

Methods: This study involves total 50 patients 25 diabetic and 25 non diabetic patients, with moderate to severe periodontitis. Regular dental check-up is done including periodontal pocket depth probing. Blood oozing from the gingival crevice was collected with the strips of glucose self monitoring devise. To the same patient finger stick Blood glucose level and venous blood[VB] glucose level with standardized laboratory method was taken.

Results: The results showed significant strong correlation between all three groups. With p value (P < 0.001).

Conclusion: Blood oozing during the pocket detection can be used for diagnosing aidin' diabetes.

Keywords: gingival crevicular blood, Finger stick blood, venous blood, diabetes mellitus, Glucometer, chronic periodontitis.
Introduction

The term diabetes mellitus describes a metabolic disorder of multiple aetiology characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. The chronic hyperglycaemia of diabetes is associated with long-term damage, dysfunction, and failure of different organs, especially the eyes, kidneys, nerves, heart, and blood vessels. Symptoms of marked hyperglycaemia include polyuria, polydipsia, weight loss, sometimes with polyphagia, and blurred vision.

Chronic Periodontitis. An infectious disease resulting in inflammation within the supporting tissues of the teeth, progressive attachment, and bone loss. It is characterized by pocket formation and/or gingival recession. It is recognized as the most frequently occurring form of periodontitis. Diabetes mellitus and periodontitis are both common, chronic diseases. It is generally accepted that the inter-relationship between diabetes mellitus and periodontitis is a two-way relationship, i.e. the presence of one condition tends to increases the risk and severity of the other, and vice versa. It is widely accepted that diabetes mellitus is a risk factor for increased prevalence and severity of periodontitis. Conversely, periodontitis is an important factor for increased risk of diabetic complications in patients with diabetes.

Periodontal disease is more prevalent and more severe in persons with diabetes than in non-diabetic persons. Indeed, the periodontal signs and symptoms are now recognized as the "sixth complication" of diabetes. Usually dentist come across the chronic periodontitis patients with diabetes and may or may not be knowing it. Hence early diagnosis of diabetes with a chair side non-invasive, rapid test of gingival crevicular blood with glucometer could be most helpful and widely acceptable by the patients.

Materials and Methods:

A total number of 50 patients are selected, and subjected to routine clinical periodontal examinations, Patients with moderate [periodontal pocket depth 3-5 mm] to severe periodontitis [>6] are included in the study. After taking the personal and medical history the patients are divided into 2 groups.

Group – 25 known diabetic patients
Group- 25 Non diabetic patients

Including Criteria: Patient aged 30-65 years, periodontitis, Diabetic patients with generalized moderate to severe chronic periodontitis and cooperative patients.

Excluding criteria: Patients under Antibiotic therapy, Patients on any kind of anticoagulants, Pregnancy, Patients having any blood disorders and patients with severe cardiovascular, hepatic, immunologic, renal, haematological, or other organ disorders.

Institutional ethical committee clearance was taken, and a written and informed consent was obtained from all the patients of the study, all the participants were asked to rinse oral cavity with 0.2% chlorhexidine to reduce the microbial load. Maxillary anterior teeth are taken as test site. The area is air dried and isolated to minimize the contamination. Periodontal pocket was probed with unc-15 probe, and the profuse bleeding site was noticed. The self-monitoring glucometer[Accu-check Roche Diagnostic, Germany] was used according to manufacturer’s recommendations to detect the glucose levels in gingival crevicular blood, and the reading was noted down. After that the readings were also noted from the finger stick blood [FSB], and reading was taken. After the two tests the estimation of glucose level using venous blood from the venepuncture of the anterior cubital vein. Using a sterile syringe and needle 2 ml of blood was collected and glucose level is
estimated with the help of automated chemistry analyser. Data obtained was tabulated and statistically analysed. Mean and standard deviations were calculated for both the groups using Karl Pearson correlation coefficient, unpaired ‘t’ test and associated ‘p’ value.
Results

A total number of 50 chronic generalised gingivitis patients are participated in the study. Among them 25 are known diabetic and 25 patients are non-diabetics.

The comparison of blood glucose levels of GCB with FSB and VB showed that for diabetic group, the mean GCB, FSB and VB glucose level were 146.07±39.23 mg/dl, 156.61±42.18 mg/dl and 146.12±39.89 mg/dl respectively. Similarly, for the non-diabetic group, the mean GCB, FSB and VB glucose level were 88.70±11.07 mg/dl, 97.35±13.05 mg/dl and 91.41±9.30 mg/dl respectively. The results were statistically highly significant (p < 0.005) in both the groups for GCB with FSB while non-significant (p > 0.005) for GCB with VB in both the groups (Table 1).

The comparison of GCB with FSB and VB showed a strong positive correlation between glucose levels of GCB with FSB and VB with the values of 0.786 and 0.672 in diabetic group and 0.867 and 0.648 in non-diabetic group respectively (Table 1).

The correlation between the glucose levels of FSB and VB showed a coefficient (r) value of 0.943 and 0.748 in both diabetic and non-diabetic groups and represents a strong positive relationship (Table 2).

<table>
<thead>
<tr>
<th>TABLE 1: CORRELATION COEFFICIENT BETWEEN GCB, FB AND VB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Diabetic</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Non-Diabetic</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
TABLE 2: CORRELATION OF FB WITH VB

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parameters</th>
<th>Mean</th>
<th>R value</th>
<th>P value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetic</td>
<td>FB</td>
<td>156.61±42.18</td>
<td>R=0.943</td>
<td>P=0.001</td>
<td>Significant</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>146.12±39.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Diabetic</td>
<td>FB</td>
<td>97.35±13.05</td>
<td>R=0.748</td>
<td>P=0.001</td>
<td>Significant</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>91.41±9.30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion

Diabetes is a group of metabolic diseases characterized by hyperglycaemia resulting from defects in insulin secretion, insulin action, or both. The chronic hyperglycaemia of diabetes is associated with long-term damage, dysfunction, and failure of different organs, especially the eyes, kidneys, nerves, heart, and blood vessels. Symptoms of marked hyperglycaemia include polyuria, polydipsia, weight loss, sometimes with polyphagia, and blurred vision. Impairment of growth and susceptibility to certain infections may also accompany chronic hyperglycaemia. Acute, life-threatening consequences of uncontrolled diabetes are hyperglycaemia with ketoacidosis or the nonketotic hyperosmolar syndrome. Long-term complications of diabetes include retinopathy with potential loss of vision; nephropathy leading to renal failure; peripheral neuropathy with risk of foot ulcers, amputations, and Charcot joints; and autonomic neuropathy causing gastrointestinal, genitourinary, and cardiovascular symptoms and sexual dysfunction. Patients with diabetes have an increased incidence of atherosclerotic cardiovascular, peripheral arterial, and cerebrovascular disease. Hypertension and abnormalities of lipoprotein metabolism are often found in people with diabetes. There is a two-way relationship between DM and periodontitis. On one hand, poorly controlled DM increases the risk for developing destructive periodontitis and impairs treatment outcome. On the other hand, chronic inflammatory periodontal disease considerably complicates diabetic control. Periodontitis is added as the 6th complication of the diabetes.

The degree of hyperglycaemia (if any) may change over time, depending on the extent of the underlying disease process, hence early is very important in these patients. And periodontitis is one of the early finding in diabetics that we as a dentist will come across in our regular practice.

Blood glucose testing with the self-monitoring devices is sensitive method, since it can give results with small amount of blood and is very less time consuming. GCB collected during periodontal examination is an excellent source of blood, safe, easy to perform and comfortable to the patient. Moreover, the technique described is more familiar and less traumatic to the patient than a finger-puncture.

The use of gingival crevicular blood to measure blood glucose is likely to be more acceptable to the dental professional and the patient because provider and patients anticipate oral intervention in the dental office. Persons can reliably be screened for diabetes by measuring glucose in gingival crevicular blood sample, since probing and gingival crevicular blood collection is less time consuming and did not increase the patient's discomfort.

The comparison of blood glucose levels of GCB with FSB and VB in our study showed that for diabetic group, the mean GCB, FSB and VB glucose level were 146.07±39.23 mg/dl, 156.61±42.18 mg/dl and 146.12±39.89 mg/dl respectively, and for the non-diabetic group, the mean GCB, FSB and VB glucose level were 88.70±11.07 mg/dl, 97.35±13.05 mg/dl and 91.41±9.30 mg/dl respectively. The results were highly significant (p < 0.005) in both the groups for GCB with FSB but non-significant (p > 0.005) for GCB with VB. The correlation coefficient (r) showed a strong positive correlation between glucose levels of GCB with FSB in both the groups and VB (Table 2). Similar correlation was observed by Parker et al., Beikler et al., and Sarita Parihar et al in their studies.

But study by Tsutsui et al. found a slightly lower correlation between the glucose values of GCB and FSB (r = 0.782). It may be due to the difference in the methodology used.

Conclusion
From the values of the above study we can conclude that GCB collected during the routine clinical examinations can be used as a diagnostic method for screening the diabetic patients in regular dental setup. Which could be a safe non invasive and less painful and highly compatible to both the patient and doctor as well.

References

3. Diabetes Care. 2014;Volume 37, Supplement 1,