DIAGNOSTIC PERFORMANCE OF ZIEHL-NEELSEN & CBNAAT TECHNIQUES IN PULMONARY TUBERCULOSIS, A RETROSPECTIVE ANALYSIS AT TERTIARY CARE HOSPITAL IN JHALAWAR, RAJASTHAN.

Dr. Shilpi Hora¹, Dr. Neeraj Raman², Dr. Mukesh Kumar³, Dr. Needa Saneef⁴
Department of Microbiology, Jhalawar Hospital & Medical College, Jhalawar, Rajasthan, India

Article Info: Received 02 December 2020; Accepted 07 January 2021
DOI: https://doi.org/10.32553/ijmbs.v5i1.1633

Corresponding author: Dr. Mukesh Kumar

Conflict of interest: No conflict of interest.

Abstract
Introduction: Tuberculosis (TB) remains a leading cause of death among infectious diseases worldwide. The advent of the CBNAAT was a revolution in the diagnosis of tuberculosis, especially with high incidence and resource poor regions. It can be used close to the point of care by operators with minimal technical expertise, enabling diagnosis of TB and rifampicin Resistance (RIF) concurrently using unprocessed clinical specimens, in less than 2h.

Aim: To evaluate the diagnostic performances of Ziehl-Neelsen & CBNAAT techniques in detection of Pulmonary Tuberculosis.

Materials and Methods: We retrospectively reviewed the 2414 sputum samples of suspected pulmonary TB. Sputum samples were subjected for ZN staining and CBNAAT. RIF resistance was detected by CBNAAT.

Results: Out of 2414 samples, 751 sputum samples were positive by smear microscopy. 1127 Samples were confirmed positive by CBNAAT examination. Majority of cases, 43.57% were in 21-40 yrs age group. 24.40% were females and 75.59% were males. Sensitivity of CBNAAT was 100% for sputum positive cases and sensitivity was 22.6% for sputum negative cases. Overall RIF resistance was detected in 49 (4.4%) cases in present study.

Conclusion: CBNAAT provide sensitive detection of tuberculosis and rifampicin resistance directly from untreated sputum in less than 2 hours with minimal hands-on time.

Keywords: Cartridge-based nucleic acid amplification tests (CBNAAT), Rifampicin(RIF)

Introduction

Despite declining global incidence and mortality, tuberculosis (TB) remains a leading cause of death among infectious diseases worldwide, with an estimated 10.0 million new cases and 1.2 million TB deaths among HIV-negative people and 251000 deaths with coexistent HIV infection in 2018.¹

Detection and quantitative estimation of acid-fast bacilli (AFB) in clinical specimen by smear microscopy, a relatively simple and inexpensive screening tool, gives the first bacteriologic evidence of the presence and in assessing the patient's infectiousness. It provides the physician with a preliminary confirmation of the diagnosis. But smear microscopy is unable to differentiate drug resistant and susceptible strains of Mycobacterium tuberculosis complex (MTBC).²

Conventional methods for mycobacteriological culture and drug susceptibility testing (DST) are time consuming, cumbersome and resource-intensive requiring up to 6 and 8 weeks for final identification on liquid and solid culture media, respectively. During this time patients may be inappropriately treated and so amplification of drug resistant strains may occur. Novel technologies for rapid detection of anti-TB drug resistance have therefore become a priority in TB research and development.³

Recently introduced as a breakthrough in TB diagnostics an automated cartridge-based nucleic acid amplification test (CBNAAT), Xpert MTB/RIF assay (Cepheid, Sunnyvale, CA) is a semi-nested real-time PCR amplifying the rpoB gene target, so capable of simultaneously detecting Mycobacterium tuberculosis complex (MTBC) and Rifampicin (RIF) resistance within 2 hours in the clinical samples; endorsed by the WHO in 2010, approved by the Food and Drug Administration (FDA) in 2013. The sample processing, nucleic acid extraction, amplification and detection of target sequences are performed in a single cartridge in this integrated system.⁴

Objectives:

To evaluate the diagnostic performances of Ziehl-Neelsen & CBNAAT techniques in detection of Pulmonary Tuberculosis.

Materials and Methods:

This retrospective study was conducted from January 2019 to October 2019 at Jhalawar Hospital after obtaining ethical approval from institutional ethical committee.

A total of 2414 sputum samples from all the patients with symptoms and signs, suggestive of pulmonary tuberculosis(PTB), as well as chest X-ray showing features of PTB, were collected from patients at the Jhalawar TB Clinic and other county medical treatment facilities, in the course of routine clinical evaluations for pulmonary TB.
Inclusion criteria

Patients with clinical suspicion of pulmonary tuberculosis including symptoms of cough with or without expectoration for >2 weeks, weight loss, fatigue, haemoptysis and loss of appetite.

Exclusion Criteria

Patients suspected to have Extra Pulmonary Tuberculosis (EPTB) were excluded from the study.

Each sputum samples received in the lab from the centers were divided;

One part was subjected for ZN staining to detect Acid Fast Bacilli (AFB). The second part was used to carry out CBNAAT for detection of M. tuberculosis and RIF resistance on the same day.

Using conventional ZN staining method, Acid fast bacilli were detected in the sputum samples by direct smear microscopy. Slides showing red coloured acid fast bacilli were taken as positive.

CBNAAT was performed according to the manufacturer’s instructions. Samples were collected in containers provided and treated with sample reagent in a proportion of 2:1 and incubated for 15 minutes at 20-30 °C. Pipette at least 2ml with the plastic transfer pipette from the collection container into the sample chamber of the Xpert cartridge and put into the GeneXpert instrument system and the automatically generated results were read after 90 min.

Results:

A total of 2414 patients were included in our study, out of which 1127 Samples were confirmed positive by CBNAAT examination. From the confirmed positive 852(75.59%) were males and 275 (24.40%) were females.

Table 1: Mycobacterium Tuberculosis detected by CBNAAT-Demographic Character

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBNAAT</td>
<td>852</td>
<td>275</td>
</tr>
</tbody>
</table>

Table 2: Age group distribution

<table>
<thead>
<tr>
<th>Age group</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>95</td>
<td>64</td>
</tr>
<tr>
<td>21-40</td>
<td>359</td>
<td>132</td>
</tr>
<tr>
<td>41-60</td>
<td>308</td>
<td>58</td>
</tr>
<tr>
<td>>61</td>
<td>90</td>
<td>21</td>
</tr>
</tbody>
</table>

In our study majority of cases, 43.57% were in 21-40 yrs age group followed by 32.47% in 41-60 yrs age group.

Table 3: Sputum smear positive versus CBNAAT positive

<table>
<thead>
<tr>
<th>No of cases examined</th>
<th>No of cases diagnosed</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smear microscopy</td>
<td>2414</td>
<td>751</td>
</tr>
<tr>
<td>CBNAAT</td>
<td>2414</td>
<td>1127</td>
</tr>
</tbody>
</table>

Out of 2414 samples, 751 sputum samples were positive by smear microscopy. 1127 Samples were confirmed positive by CBNAAT examination.

Discussion:

Proper tuberculosis care and control averted up to 6 million deaths and cured 36 million people between 1995 and 2008. Early diagnosis and treatment remains the cornerstone of TB control. Globally, due to rising of multidrug resistance and extensively drug-resistant tuberculosis, leading to need for dramatic expansion of culture and drug-susceptibility testing especially in endemic countries like India. Unfortunately, the infrastructure and technically skilled personnel required for such testing are available only in a limited number of reference centers. Further, the results of testing are often not available for at least 4 months, leading to dramatical reduction of its clinical utility.

The laboratory and the clinicians requesting service must be confident of the results the laboratory provides. However, in developing countries rapid and accurate diagnosis of tuberculosis is still a challenge. The main advantage of CBNAAT lies in its simplicity of use, rapid diagnostic ability and early detection of RIF resistance. In addition, molecular assays do not need viable bacilli; therefore, specimen transport conditions do not have as much impact on the test outcome as with culture, and specimens can be shipped by regular mail.

Although the costs of instruments and tests will still be considerably higher than those for Microscopy but is less costly than implementation of culture and drug-susceptibility testing. MTB/RIF assay generates no infectious aerosols and eliminates the necessity for a biosafety cabinet.

In this study, majority of cases, 43.57% were in 21-40 yrs age group with male preponderance (75.59%). Dewan R et al. in their study found that the mean age of patients were 35±9 years and 76% were males.

In this study sensitivity of CBNAAT varied significantly between 100% in sputum smear-positive PTB and 22.6% in
sputum smear negative PTB. Saugat et al.8 and Mohanty T et al9, reported sensitivity of 15\% and 32\% of CBNAAT in smear negative PTB, which correlates with the present study.

Conclusions:

Much intensified action in the form of early, accurate diagnosis and proper treatment is needed to decrease the TB incidence rate by an average of 16\% per year for the next 40 years in order to eliminate TB as a public health problem (as defined by a TB incidence of less than one per million population worldwide) by 2050.4

Detection of AFB in sputum smear is a simple, rapid, inexpensive and very specific diagnostic tool for PTB. However, its major limitation is low sensitivity.

This retrospective study highlights the importance of setting up CBNAAT at every district level of health care centre and all medical institutes for early and accurate detection and prompt treatment of TB.

Acknowledgements

We acknowledge the support extended by Head of the Department and technical staff of TB and Chest clinic, Jhalawar Hospital.

References: