CLINICAL PROFILE OF NEONATES WITH RESPIRATORY DISTRESS

Dr. Anubha Nema¹, Dr. Sunil Kumar Mittal²

¹ MD Paediatric, ² DM Cardiology
SMS Medical College, Jaipur

Article Info: Received 04 June 2019; Accepted 28 June. 2019
DOI: https://doi.org/10.32553/ijmbs.v3i7.358
Address for Correspondence: Dr. Sunil Kumar Mittal
Conflict of interest: No conflict of interest.

Abstract
Background: Respiratory distress (RD) is a challenging problem and is one of the most common causes of admission in neonatal intensive care unit (NICU).
Methods: A prospective study was conducted on 50 cases. Term, pre-term and post-term babies both in-borns and out-borns cases were included in the study.
Results: Of the 50 cases admitted with RD, 31 babies (62%) were delivered vaginally and 19 (38%) by lower segment caesarean section (LSCS). There were 33 (66%) males and 17 (34%) females in the study. There were 23 (46%) pre-term babies, 26 (52%) term and 1 (2%) post-term neonates who were admitted with RD. The majority of cases 42 (82%) presented with increased respiratory rate, chest in drawings. 41 (82%) babies had flaring of alae nasi.
Conclusion: Increased respiratory rate along with chest in drawing, flaring of alae nasi are the presentation of RD in majority of cases.
Keywords: Respiratory distress (RD), Flaring of alae nasi are, Tachypnea.

Introduction:
Respiratory distress (RD) is a challenging problem and is one of the most common causes of admission in neonatal intensive care unit (NICU).¹ The neonatal mortality rate varies by state but, overall, it is reported to be 39 a 1000 live births in India.² Neonatal period is a very vulnerable period of life due to many problems which can occur. Most of the causes of neonatal morbidity and mortality are preventable.³ The common causes of RD in neonates includes transient tachypnea of the newborn (TTN), hyaline membrane disease (HMD), birth asphyxia, pneumonia, meconium aspiration syndrome (MAS), and other miscellaneous causes.⁴⁵

The severity of respiratory distress can be assessed by Downe’s scoring system which includes parameters such as respiratory rate, cyanosis, retractions, grunting and air entry in both the lungs.² Common causes of respiratory distress are respiratory distress syndrome, transient tachypnea, pneumonia, aspiration syndromes, pneumothorax and air leaks, pulmonary edema, pleural effusion and pulmonary hemorrhage.¹

Since the millennium development goals (MDG) were formed, progress toward reducing child mortality has accelerated but remains insufficient to achieve MDG. In particular, global progress toward reducing neonatal deaths that is deaths during the first 28 days of life has been slow and neonatal deaths now account for a greater proportion of child deaths than in 1990. India accounts for 27.3% of total neonatal deaths in the world. Distress NRD is ranging from 2.2% to 7.6% in developed countries and from 0.7% to 8.3% in India.⁶ It is caused by the delay in the absorption of fluid in the lungs after birth (i.e. excessive lung fluid).

MATERIALS AND METHODS

Study Design - A prospective study was conducted on who were admitted in NICU.

Inclusion Criteria - Both in-born and out-born neonate admitted to NICU with RD.

Exclusion Criteria –
Babies more than 28 days
- Babies <28 weeks of age.

Data Collection
- Neonates were classified as term, pre- and post-term were enrolled as cases with RD on the basis of clinical profile.

A detailed proforma including name, age, sex, and residence was obtained. Neonatal data recorded includes weight of the baby, gestational age, mode of delivery, APGAR score, if available, the need for resuscitation after birth, onset of RD and resolution of RD.

Factors related to labor and deliveries were assessed including type of delivery normal vaginal or C-section. Elective or emergency, place of delivery, (any associated complications like; prolonged rupture of the membrane more than 24 h, prolonged labor, meconium stained liquor, antepartum hemorrhage and others).

Maternal information was recorded including age, parity and any systemic diseases. Other risk factors include delivery prior to 38 weeks of gestation, male sex, low birth weight and macrosomia and maternal diseases such gestational diabetes and asthma. The cases were diagnosed clinically by the presence of at least 2 of the following criteria, namely RR of 60/min or more, subcostal in the drawing, and retraction, suprasternal in drawing, flaring of alae nasi, expiratory grunt and cyanosis. The diagnosis of clinical conditions producing RD was based mainly on careful scrutiny of the history, clinical and radiological findings. Continuous monitoring of oxygen saturation was done using pulse oximeter. The arterial blood gas (ABG) analysis was done frequently in unstable babies and with changes in ventilator settings. Blood glucose was monitored regularly using the dextrostix, sepsis workup was done when clinically indicated, endotracheal tube and blood culture sensitivity were ordered if septicemia or pneumonia was suspected as per guidelines baby was mechanically ventilated, and modified the settings according to ABG analysis.

RESULTS
- Of the 102 (34%) cases admitted with RD, 61 babies (60%) were delivered vaginally and 41 (40%) by lower segment caesarean section (LSCS) or C-section.

<table>
<thead>
<tr>
<th>Variable</th>
<th>No of babies</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal vaginal delivery</td>
<td>31</td>
<td>62.00%</td>
</tr>
<tr>
<td>LSCS</td>
<td>19</td>
<td>38.00%</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>33</td>
<td>66.00%</td>
</tr>
<tr>
<td>Female</td>
<td>17</td>
<td>34.00%</td>
</tr>
<tr>
<td>Gestational age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>26</td>
<td>52.00%</td>
</tr>
<tr>
<td>Preterm</td>
<td>23</td>
<td>46.00%</td>
</tr>
<tr>
<td>Postterm</td>
<td>1</td>
<td>2.00%</td>
</tr>
</tbody>
</table>

Of the 50 cases admitted with RD, 31 babies (62%) were delivered vaginally and 19 (38%) by lower segment caesarean section (LSCS). There were 33 (66%) males and 17 (34%) females in the study. There were 23 (46%) pre-term babies, 26 (52%) term and 1 (2%) post-term neonates who were admitted with RD.

<table>
<thead>
<tr>
<th>Clinical profile</th>
<th>No of babies</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachypnea</td>
<td>42</td>
<td>84.00%</td>
</tr>
<tr>
<td>Flaring of alae nasi</td>
<td>41</td>
<td>82.00%</td>
</tr>
<tr>
<td>Chest in drawing</td>
<td>42</td>
<td>84.00%</td>
</tr>
<tr>
<td>Grunting</td>
<td>21</td>
<td>42.00%</td>
</tr>
<tr>
<td>Cyanosis</td>
<td>20</td>
<td>40.00%</td>
</tr>
</tbody>
</table>

The majority of cases 42 (82%) presented with increased respiratory rate, chest in drawings. 41 (82%) babies had flaring of alae nasi.

DISCUSSION
- Of the 50 cases admitted with RD, 31 babies (62%) were delivered vaginally and 19 (38%) by lower segment caesarean section (LSCS). There were 33 (66%) males and 17 (34%) females in the study. There were 23 (46%) pre-term babies, 26 (52%) term and 1 (2%) post-term neonates who were admitted with RD.

A study done Santhosh et al. in their study showed 39% term and 61% pre-term neonates who were developed RD in newborn. the incidence of MAS in developed countries is on the decline possibly due to improved obstetric care.

Pneumothorax usually develops secondary to an underlying disease process but can occur spontaneously in 1% of newborns around the perinatal period, although only about 10% of these are symptomatic. The majority of cases 42 (82%) presented with increased respiratory rate, chest in drawings. 41 (82%) babies had flaring of alae nasi.
TTN babies develop an oxygen requirement that necessitates admission to the neonatal unit for a few days accounting for approximately 10% of all newborn term admissions. In a review of TTN, Yurdakok suggests a genetic link between TTN and later onset asthma. A similar study done by Keerti et al. showed that of all the symptoms, grunting, flaring of alae nasi had high specificity for RD in newborn while tachypnea, chest retractions and difficulty in feeding has high sensitivity. Every year a significant number of term-born infants are admitted to neonatal units for management of their respiratory distress. And that the most common clinical presentations were tachypnea, flaring of alae nasi and chest retraction. It was also observed that there was a male preponderance with a ratio more than 1.5:1. And showed inversely proportional to gestational age and birth weight, and C section can favor the onset of RD in newborns.

CONCLUSION

Increased respiratory rate along with chest in drawing, flaring of alae nasi are the presentation of RD in majority of cases.

REFERENCES